首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105477篇
  免费   5524篇
  国内免费   3752篇
  2023年   1186篇
  2022年   1275篇
  2021年   3218篇
  2020年   2274篇
  2019年   3084篇
  2018年   2526篇
  2017年   1801篇
  2016年   2491篇
  2015年   4562篇
  2014年   8384篇
  2013年   8365篇
  2012年   6121篇
  2011年   7225篇
  2010年   5157篇
  2009年   5025篇
  2008年   5184篇
  2007年   5566篇
  2006年   4061篇
  2005年   3602篇
  2004年   2694篇
  2003年   2279篇
  2002年   2164篇
  2001年   1693篇
  2000年   1476篇
  1999年   1374篇
  1998年   1229篇
  1997年   1054篇
  1996年   1098篇
  1995年   1280篇
  1994年   1142篇
  1993年   1101篇
  1992年   1060篇
  1991年   1048篇
  1990年   857篇
  1989年   856篇
  1988年   819篇
  1987年   689篇
  1986年   577篇
  1985年   880篇
  1984年   1284篇
  1983年   765篇
  1982年   1057篇
  1981年   1021篇
  1980年   777篇
  1979年   751篇
  1978年   490篇
  1977年   452篇
  1976年   435篇
  1974年   273篇
  1973年   276篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
A large number of trafficking steps occur between the last compartment of the Golgi apparatus (TGN) and the vacuole of the yeast Saccharomyces cerevisiae. To date, two intracellular routes from the TGN to the vacuole have been identified. Carboxypeptidase Y (CPY) travels through a prevacuolar/endosomal compartment (PVC), and subsequently on to the vacuole, while alkaline phosphatase (ALP) bypasses this compartment to reach the same organelle. Proteins resident to the TGN achieve their localization despite a continuous flux of traffic by continually being retrieved from the distal PVC by virtue of an aromatic amino acid–containing sorting motif. In this study we report that a hybrid protein based on ALP and containing this retrieval motif reaches the PVC not by following the CPY sorting pathway, but instead by signal-dependent retrograde transport from the vacuole, an organelle previously thought of as a terminal compartment. In addition, we show that a mutation in VAC7, a gene previously identified as being required for vacuolar inheritance, blocks this trafficking step. Finally we show that Vti1p, a v-SNARE required for the delivery of both CPY and ALP to the vacuole, uses retrograde transport out of the vacuole as part of its normal cellular itinerary.  相似文献   
102.
About 80% of the evolutionary history of life on Earth is restricted to microorganisms which have had several billion years to speciate. The reasons for the origin (self-assembly) of life on Earth, bacterial cell division and why there are so many different bacteria and their global dispersal are discussed from an evolutionary perspective.  相似文献   
103.
Bile micelles play an important role in oral absorption of low‐solubility compounds. Bile micelles can affect solubility, dissolution rate, and permeability. For the pH–solubility profile in bile micelles, the HendersonHasselbalch equation should be modified to take bile‐micelle partition into account. For the dissolution rate, in the NernstBrunner equation, the effective diffusion coefficient in bile‐micelle media should be used instead of the monomer diffusion coefficient. The diffusion coefficient of bile micelles is 8‐ to 18‐fold smaller than that of monomer molecules. For permeability, the effective diffusion coefficient in the unstirred water layer adjacent to the epithelial membrane, and the free fraction at the epithelial membrane surface should be taken into account. The importance of these aspects is demonstrated here using several in vivo and clinical oral‐absorption data of low‐solubility model compounds. Using the theoretical equations, the food effect on oral absorption is further discussed.  相似文献   
104.
The circadian clock regulates a wide range of electrophysiological and developmental processes in plants. Here, we discuss the direct influence of a circadian clock on biologically closed electrochemical circuits in vivo. The biologically closed electrochemical circuits in the leaves of C. miniata (Kaffir lily), Aloe vera and Mimosa pudica, which regulate their physiology, were analyzed using the charge stimulation method. Plants are able to memorize daytime and nighttime. Even at continuous light or darkness, plants recognize nighttime or daytime and change the input resistance. The circadian clock can be maintained endogenously and has electrochemical oscillators, which can activate ion channels in biologically closed electrochemical circuits. The activation of voltage gated channels depends on the applied voltage, electrical charge, and the speed of transmission of electrical energy from the electrostimulator to plants.  相似文献   
105.
106.
Despite the rapid technical progress in pharmaceutical industry in the past decade, it is still a great challenge to find new drugs and the situation seems more and more serious. However, the history of pharmaceutical industry clearly indicated that the significance of drug discovery went far beyond providing new drugs. For instance, drugs or candidates could be used as selective probes to reveal novel cellular mechanisms, which is a fundamental tenet of chemical biology. More interestingly, accumulating evidence indicates that drugs and candidates can find important use in stem cell biology. Not only approved drugs but also undeveloped pharmacological agents could serve as efficient agents to regulate stem cell fate. Moreover, the target and activity knowledge accumulated during the drug discovery process will help select the stem cell fate modulators in a rational manner. As the progress in stem cell biology will bring positive influence to drug discovery, it can be expected that the current drug discovery efforts will finally bear great fruits in the future.  相似文献   
107.
108.
The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17 kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells.  相似文献   
109.
The heart is one of the least regenerative organs in the body, and highly vulnerable to the increasing incidence of cardiovascular diseases in an aging world population. Cell-based approaches aimed at cardiac repair have recently caused great public excitement. But clinical trials of patients’ own skeletal myoblasts or bone marrow cells for transplantation have been disappointing. Human embryonic stem cells (hESCs) form bona fide cardiomyocytes in vitro which are readily generated in mass culture and are being tested in animal models of heart damage. The early results, while encouraging, underscore that much remains to be done. This review focuses on the many challenges that remain before hESCs-mediated repair of the human heart becomes a reality.  相似文献   
110.
At room temperature, the chlorophyll (Chl) a fluorescence induction (FI) kinetics of plants, algae and cyanobacteria go through two maxima, P at ∼ 0.2-1 and M at ∼ 100-500 s, with a minimum S at ∼ 2-10 s in between. Thus, the whole FI kinetic pattern comprises a fast OPS transient (with O denoting origin) and a slower SMT transient (with T denoting terminal state). Here, we examined the phenomenology and the etiology of the SMT transient of the phycobilisome (PBS)-containing cyanobacterium Synechococcus sp PCC 7942 by modifying PBS → Photosystem (PS) II excitation transfer indirectly, either by blocking or by maximizing the PBS → PS I excitation transfer. Blocking the PBS → PS I excitation transfer route with N-ethyl-maleimide [NEM; A. N. Glazer, Y. Gindt, C. F. Chan, and K.Sauer, Photosynth. Research 40 (1994) 167-173] increases both the PBS excitation share of PS II and Chl a fluorescence. Maximizing it, on the other hand, by suspending cyanobactrial cells in hyper-osmotic media [G. C. Papageorgiou, A. Alygizaki-Zorba, Biochim. Biophys. Acta 1335 (1997) 1-4] diminishes both the PBS excitation share of PS II and Chl a fluorescence. Here, we show for the first time that, in either case, the slow SMT transient of FI disappears and is replaced by continuous P → T fluorescence decay, reminiscent of the typical P → T fluorescence decay of higher plants and algae. A similar P → T decay was also displayed by DCMU-treated Synechococcus cells at 2 °C. To interpret this phenomenology, we assume that after dark adaptation cyanobacteria exist in a low fluorescence state (state 2) and transit to a high fluorescence state (state 1) when, upon light acclimation, PS I is forced to run faster than PS II. In these organisms, a state 2 → 1 fluorescence increase plus electron transport-dependent dequenching processes dominate the SM rise and maximal fluorescence output is at M which lies above the P maximum of the fast FI transient. In contrast, dark-adapted plants and algae exist in state 1 and upon illumination they display an extended P → T decay that sometimes is interrupted by a shallow SMT transient, with M below P. This decay is dominated by a state 1 → 2 fluorescence lowering, as well as by electron transport-dependent quenching processes. When the regulation of the PBS → PS I electronic excitation transfer is eliminated (as for example in hyper-osmotic suspensions, after NEM treatment and at low temperature), the FI pattern of Synechococcus becomes plant-like.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号